Advertisement
Review Article|Articles in Press

External Hemorrhage Control Techniques for Human Space Exploration: Lessons from the Battlefield

  • Stijn J.J. Thoolen
    Correspondence
    Corresponding author: Stijn JJ Thoolen, MD, Neural Systems Group, Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA
    Affiliations
    Neural Systems Group, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA

    Centre for Human and Applied Physiological Sciences, King’s College London, United Kingdom
    Search for articles by this author
  • Maybritt Kuypers
    Affiliations
    European Astronaut Centre, European Space Agency, Cologne, Germany

    Department of Emergency Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
    Search for articles by this author
Published:March 09, 2023DOI:https://doi.org/10.1016/j.wem.2023.01.006
      The past few decades of military experience have brought major advances in the prehospital care of patients with trauma. A focus on early hemorrhage control with aggressive use of tourniquets and hemostatic gauze is now generally accepted. This narrative literature review aims to discuss external hemorrhage control and the applicability of military concepts in space exploration. In space, environmental hazards, spacesuit removal, and limited crew training could cause significant time delays in providing initial trauma care. Cardiovascular and hematological adaptations to the microgravity environment are likely to reduce the ability to compensate, and resources for advanced resuscitation are limited. Any unscheduled emergency evacuation requires a patient to don a spacesuit, involves exposure to high G-forces upon re-entry into Earth’s atmosphere, and costs a significant amount of time until a definitive care facility is reached. As a result, early hemorrhage control in space is critical. Safe implementation of hemostatic dressings and tourniquets seems feasible, but adequate training will be essential, and tourniquets are preferably converted to other methods of hemostasis in case of a prolonged medical evacuation. Other emerging approaches such as early tranexamic acid administration and more advanced techniques have shown promising results as well. For future exploration missions to the Moon and Mars, when evacuation is not possible, we look into what training or assistance tools would be helpful in managing the bleed at the point of injury.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Wilderness & Environmental Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Summers R.L.
        • Johnston S.L.
        • Marshburn T.H.
        • Williams D.R.
        Emergencies in space.
        Ann Emerg Med. 2005; 46: 177-184
        • Bloomberg J.J.
        • Reschke M.F.
        • Clément G.R.
        • Mulavara A.P.
        • Taylor L.C.
        NASA Evidence Report: Risk of Impaired Control of Spacecraft/Associated Systems and Decreased Mobility Due to Vestibular/Sensorimotor Alterations Associated with Space flight.
        National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, Houston, TX2016 (Available at:)
        • Kirkpatrick A.W.
        • Ball C.G.
        • Campbell M.
        • Williams D.R.
        • Parazynski S.E.
        • Mattox K.L.
        • et al.
        Severe traumatic injury during long duration spaceflight: light years beyond ATLS.
        J Trauma Manag Outcomes. 2009; 3: 4
        • Antonsen E.L.
        • Myers J.G.
        • Boley L.
        • Arellano J.
        • Kerstman E.
        • Kadwa B.
        • et al.
        Estimating medical risk in human spaceflight.
        NPJ Microgravity. 2022; 8: 8
        • Antonsen E.L.
        • Van Baalen M.
        • Kadwa B.
        • Boley L.
        • Arellano J.
        • Kerstman E.
        • et al.
        NASA TM-20210009779: Comparison of Health and Performance Risk for Accelerated Mars Mission Scenarios.
        National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, Houston, TX2021 (Available at:)
        • Blue R.S.
        • Bridge L.M.
        • Chough N.G.
        • Cushman J.
        • Khpal M.
        • Watkins S.
        NASA/TM–2014-217384: Identification of Medical Training Methods for Exploration Missions.
        National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, Houston, TX2014 (Available at:)
        • Campbell M.R.
        • Billica R.D.
        • Johnston 3rd, S.L.
        • Muller M.S.
        Performance of advanced trauma life support procedures in microgravity.
        Aviat Space Environ Med. 2002; 73: 907-912
        • American College of Surgeons’ Committee on Trauma
        ATLS: Advanced Trauma Life Support.
        10th ed. American College of Surgeons, Chicago, IL2018
        • Butler Jr., F.K.
        • Hagmann J.
        • Butler E.G.
        Tactical combat casualty care in special operations.
        Mil Med. 1996; 161: 3-16
        • Butler F.K.
        Two decades of saving lives on the battlefield: tactical combat casualty care turns 20.
        Mil Med. 2017; 182: e1563-e1568
        • Montgomery H.R.
        • Drew B.
        • Torrisi J.
        • Adams M.G.
        • Remley M.A.
        • Rich T.A.
        • et al.
        TCCC guidelines comprehensive review and edits 2020: TCCC guidelines change 20-05 01 November 2020.
        J Spec Oper Med. 2021; 21: 122-127
        • Butler Jr., F.K.
        Introduction to tactical combat casualty care (Ch. 23).
        in: National Association of Emergency Medical Technicians. PHTLS: Prehospital Trauma Life Support: Military Edition. 9th ed. Jones & Bartlett Learning, Burlington, MA2021
        • Eastridge B.J.
        • Mabry R.L.
        • Seguin P.
        • Cantrell J.
        • Tops T.
        • Uribe P.
        • et al.
        Death on the battlefield (2001-2011): implications for the future of combat casualty care.
        J Trauma Acute Care Surg. 2012; 73 (suppl 5):S431-7
        • Kotwal R.S.
        • Montgomery H.R.
        • Kotwal B.M.
        • Champion H.R.
        • Butler Jr., F.K.
        • Mabry R.L.
        • et al.
        Eliminating preventable death on the battlefield.
        Arch Surg. 2011; 146: 1350-1358
        • Butler Jr., F.K.
        • Blackbourne L.H.
        Battlefield trauma care then and now: a decade of tactical combat casualty care.
        J Trauma Acute Care Surg. 2012; 73 (suppl 5):S395-402: S395-S402
        • Savage E.
        • Forestier C.
        • Withers N.
        • Tien H.
        • Pannell D.
        Tactical combat casualty care in the Canadian Forces: lessons learned from the Afghan war.
        Can J Surg. 2011; 54: S118-S123
        • Callaway D.W.
        Translating tactical combat casualty care lessons learned to the high-threat civilian setting: tactical emergency casualty care and the Hartford consensus.
        Wilderness Environ Med. 2017; 28: S140-S145
        • Jacobs L.M.
        • Wade D.
        • McSwain N.E.
        • Butler F.K.
        • Fabbri W.
        • Eastman A.
        • et al.
        Hartford Consensus: a call to action for THREAT, a medical disaster preparedness concept.
        J Am Coll Surg. 2014; 218: 467-475
        • Bulger E.M.
        • Snyder D.
        • Schoelles K.
        • Gotschall C.
        • Dawson D.
        • Lang E.
        • et al.
        An evidence-based prehospital guideline for external hemorrhage control: American College of Surgeons Committee on Trauma.
        Prehosp Emerg Care. 2014; 18: 163-173
        • Charlton N.P.
        • Pellegrino J.L.
        • Kule A.
        • Slater T.M.
        • Epstein J.L.
        • Flores G.E.
        • et al.
        2019 American Heart Association and American Red Cross focused update for first aid: presyncope: an update to the American Heart Association and American Red Cross guidelines for first aid.
        Circulation. 2019; 140: e931-e938
        • Drew B.
        • Bennett B.L.
        • Littlejohn L.
        Application of current hemorrhage control techniques for backcountry care: part one, tourniquets and hemorrhage control adjuncts.
        Wilderness Environ Med. 2015; 26: 236-245
        • Littlejohn L.
        • Bennett B.L.
        • Drew B.
        Application of current hemorrhage control techniques for backcountry care: part two, hemostatic dressings and other adjuncts.
        Wilderness Environ Med. 2015; 26: 246-254
        • Butler F.K.
        • Bennett B.
        • Wedmore C.I.
        Tactical combat casualty care and wilderness medicine: advancing trauma care in austere environments.
        Emerg Med Clin North Am. 2017; 35: 391-407
        • Kragh Jr., J.F.
        • Dubick M.A.
        Bleeding control with limb tourniquet use in the wilderness setting: review of science.
        Wilderness Environ Med. 2017; 28: S25-S32
        • Nowak E.S.
        • Reyes D.P.
        • Bryant B.J.
        • Cap A.P.
        • Kerstman E.L.
        • Antonsen E.L.
        Blood transfusion for deep space exploration.
        Transfusion. 2019; 59: 3077-3083
        • Hamilton D.R.
        Cardiovascular disorders (Ch. 16).
        in: Barratt M.R. Pool S.L. Principles of Clinical Medicine for Space Flight. Springer, New York, NY2008: 317-359
        • Billica R.D.
        • Simmons S.C.
        • Mathes K.L.
        • McKinley B.A.
        • Chuang C.C.
        • Wear M.L.
        • et al.
        Perception of the medical risk of spaceflight.
        Aviat Space Environ Med. 1996; 67: 467-473
        • Johnston S.L.
        • Arenare B.A.
        • Smart K.T.
        Medical evacuation and vehicles for transport (Ch. 7).
        in: Barratt M.R. Pool S.L. Principles of Clinical Medicine for Space Flight. Springer, New York, NY2008: 139-161
        • Stewart L.H.
        • Trunkey D.
        • Rebagliati G.S.
        Emergency medicine in space.
        J Emerg Med. 2007; 32: 45-54
        • Scheuring R.A.
        • Mathers C.H.
        • Jones J.A.
        • Wear M.L.
        Musculoskeletal injuries and minor trauma in space: incidence and injury mechanisms in U.S. astronauts.
        Aviat Space Environ Med. 2009; 80: 117-124
        • Caldwell E.
        • Gernhardt M.
        • Somers J.T.
        • Younker D.
        • Newby N.
        NASA Evidence Report: Risk of Injury Due to Dynamic Loads. Houston, TX.
        National Aeronautics and Space Administration, Lyndon B. Johnson Space Center. 2012; (Available at:)
        • Chappell S.P.
        • Norcross J.R.
        • Abercromby A.F.J.
        • Bekdash O.S.
        • Benson E.A.
        • Jarvis S.L.
        NASA Evidence Report: Risk of Injury and Compromised Performance Due to EVA Operations.
        National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, Houston, TX2017 (Available at:)
        • Campbell M.R.
        A review of surgical care in space.
        J Am Coll Surg. 2002; 194: 802-812
        • Locatelli L.
        • Colciago A.
        • Castiglioni S.
        • Maier J.A.
        Platelets in wound healing: what happens in space?.
        Front Bioeng Biotechnol. 2021; 9716184
        • Garbino A.
        • Nusbaum D.M.
        • Buckland D.M.
        • Menon A.S.
        • Clark J.B.
        • Antonsen E.L.
        Emergency medical considerations in a space-suited patient.
        Aerosp Med Hum Perform. 2016; 87: 958-962
        • Bacal K.
        • Beck G.
        • McSwain Jr., N.E.
        A concept of operations for contingency medical care on the International Space Station.
        Mil Med. 2004; 169: 631-641
        • Stepaniak P.C.
        • Hamilton G.C.
        • Olson J.E.
        • Gilmore S.M.
        • Stizza D.M.
        • Beck B.
        Physiologic effects of simulated + Gx orbital reentry in primate models of hemorrhagic shock.
        Aviat Space Environ Med. 2007; 78 (suppl):A14: A14-A25
        • Campbell M.R.
        • Billica R.D.
        Surgical capabilities (Ch. 6).
        in: Barratt M.R. Pool S.L. Principles of Clinical Medicine for Space Flight. Springer, New York, NY2008: 123-137
        • Leach C.S.
        • Alfrey C.P.
        • Suki W.N.
        • Leonard J.I.
        • Rambaut P.C.
        • Inners L.D.
        • et al.
        Regulation of body fluid compartments during short-term spaceflight.
        J Appl Physiol (1985). 1996; 81: 105-116
        • Udden M.M.
        • Driscoll T.B.
        • Pickett M.H.
        • Leach-Huntoon C.S.
        • Alfrey C.P.
        Decreased production of red blood cells in human subjects exposed to microgravity.
        J Lab Clin Med. 1995; 125: 442-449
        • Convertino V.A.
        Clinical aspects of the control of plasma volume at microgravity and during return to one gravity.
        Med Sci Sports Exerc. 1996; 28 (suppl):S45-52: S45-S52
        • Robertson D.
        • Convertino V.A.
        • Vernikos J.
        The sympathetic nervous system and the physiologic consequences of spaceflight: a hypothesis.
        Am J Med Sci. 1994; 308: 126-132
        • Fritsch-Yelle J.M.
        • Charles J.B.
        • Jones M.M.
        • Wood M.L.
        Microgravity decreases heart rate and arterial pressure in humans.
        J Appl Physiol (1985). 1996; 80: 910-914
        • Herault S.
        • Fomina G.
        • Alferova I.
        • Kotovskaya A.
        • Poliakov V.
        • Arbeille P.
        Cardiac, arterial and venous adaptation to weightlessness during 6-month MIR spaceflights with and without thigh cuffs (bracelets).
        Eur J Appl Physiol. 2000; 81: 384-390
        • Norsk P.
        • Asmar A.
        • Damgaard M.
        • Christensen N.J.
        Fluid shifts, vasodilatation and ambulatory blood pressure reduction during long duration spaceflight.
        J Physiol. 2015; 593: 573-584
        • Perhonen M.A.
        • Franco F.
        • Lane L.D.
        • Buckey J.C.
        • Blomqvist C.G.
        • Zerwekh J.E.
        • et al.
        Cardiac atrophy after bed rest and spaceflight.
        J Appl Physiol (1985). 2001; 91: 645-653
        • Charles J.B.
        • Bungo M.W.
        • Fortner G.W.
        Cardiopulmonary function (Ch. 14).
        in: Nicogossian A.E. Leach-Huntoon C. Pool S.L. Space Physiology and Medicine. 3rd ed. Lea & Febiger, Philadelphia, PA1994
        • Gunga H.C.
        • Weller von Ahlefeld V.
        • Appell Coriolano H.J.
        • Werner A.
        • Hoffmann U.
        The cardiovascular system in space.
        in: Cardiovascular System, Red Blood Cells, and Oxygen Transport in Microgravity. Springer International Publishing, Cham2016: 11-34
        • Alfrey C.P.
        • Udden M.M.
        • Leach-Huntoon C.
        • Driscoll T.
        • Pickett M.H.
        Control of red blood cell mass in spaceflight.
        J Appl Physiol (1985). 1996; 81: 98-104
        • Johnson P.C.
        • Driscoll T.B.
        • Leblanc A.D.
        Blood volume changes.
        in: Johnson R. Dietlein L.F. Biomedical Results of Skylab. Scientific and Technical Information Office, NASA, Washington, DC1977: 235-241
        • Alfrey C.P.
        • Rice L.
        • Udden M.M.
        • Driscoll T.B.
        Neocytolysis: physiological down-regulator of red-cell mass.
        Lancet. 1997; 349: 1389-1390
        • Trudel G.
        • Shafer J.
        • Laneuville O.
        • Ramsay T.
        Characterizing the effect of exposure to microgravity on anemia: more space is worse.
        Am J Hematol. 2020; 95: 267-273
        • Paul A.M.
        • Overbey E.G.
        • da Silveira W.A.
        • Szewczyk N.
        • Nishiyama N.C.
        • Pecaut M.J.
        • et al.
        Immunological and hematological outcomes following protracted low dose/low dose rate ionizing radiation and simulated microgravity.
        Sci Rep. 2021; 1111452
        • Dai K.
        • Wang Y.
        • Yan R.
        • Shi Q.
        • Wang Z.
        • Yuan Y.
        • et al.
        Effects of microgravity and hypergravity on platelet functions.
        Thromb Haemost. 2009; 101: 902-910
        • Kim D.S.
        • Vaquer S.
        • Mazzolai L.
        • Roberts L.N.
        • Pavela J.
        • Watanabe M.
        • et al.
        The effect of microgravity on the human venous system and blood coagulation: a systematic review.
        Exp Physiol. 2021; 106: 1149-1158
        • Kim K.J.
        • Bekdash O.S.
        • Norcross J.R.
        • Conkin J.
        • Garbino A.
        • Fricker J.
        • et al.
        The partial pressure of inspired carbon dioxide exposure levels in the extravehicular mobility unit.
        Aerosp Med Hum Perform. 2020; 91: 923-931
        • Law J.
        • Van Baalen M.
        • Foy M.
        • Mason S.S.
        • Mendez C.
        • Wear M.L.
        • et al.
        Relationship between carbon dioxide levels and reported headaches on the international space station.
        J Occup Environ Med. 2014; 56: 477-483
        • Kirkpatrick A.W.
        • Dulchavsky S.A.
        • Boulanger B.R.
        • Campbell M.R.
        • Hamilton D.R.
        • Dawson D.L.
        • et al.
        Extraterrestrial resuscitation of hemorrhagic shock: fluids.
        J Trauma. 2001; 50: 162-168
        • Kragh Jr., J.F.
        • Walters T.J.
        • Baer D.G.
        • Fox C.J.
        • Wade C.E.
        • Salinas J.
        • et al.
        Survival with emergency tourniquet use to stop bleeding in major limb trauma.
        Ann Surg. 2009; 249: 1-7
        • Kragh Jr., J.F.
        • Littrel M.L.
        • Jones J.A.
        • Walters T.J.
        • Baer D.G.
        • Wade C.E.
        • et al.
        Battle casualty survival with emergency tourniquet use to stop limb bleeding.
        J Emerg Med. 2011; 41: 590-597
        • Zietlow J.M.
        • Zietlow S.P.
        • Morris D.S.
        • Berns K.S.
        • Jenkins D.H.
        Prehospital use of hemostatic bandages and tourniquets: translation from military experience to implementation in civilian trauma care.
        J Spec Oper Med. 2015; 15: 48-53
        • Pons P.T.
        • Jerome J.
        • McMullen J.
        • Manson J.
        • Robinson J.
        • Chapleau W.
        The Hartford consensus on active shooters: implementing the continuum of prehospital trauma response.
        J Emerg Med. 2015; 49: 878-885
        • Eilertsen K.A.
        • Winberg M.
        • Jeppesen E.
        • Hval G.
        • Wisborg T.
        Prehospital tourniquets in civilians: a systematic review.
        Prehosp Disaster Med. 2021; 36: 86-94
        • Strauss R.
        • Menchetti I.
        • Perrier L.
        • Blondal E.
        • Peng H.
        • Sullivan-Kwantes W.
        • et al.
        Evaluating the tactical combat casualty care principles in civilian and military settings: systematic review, knowledge gap analysis and recommendations for future research.
        Trauma Surg Acute Care Open. 2021; 6e000773
        • Dayan L.
        • Zinmann C.
        • Stahl S.
        • Norman D.
        Complications associated with prolonged tourniquet application on the battlefield.
        Mil Med. 2008; 173: 63-66
        • Fitzgibbons P.G.
        • Digiovanni C.
        • Hares S.
        • Akelman E.
        Safe tourniquet use: a review of the evidence.
        J Am Acad Orthop Surg. 2012; 20: 310-319
        • Kragh Jr., J.F.
        • Walters T.J.
        • Baer D.G.
        • Fox C.J.
        • Wade C.E.
        • Salinas J.
        • et al.
        Practical use of emergency tourniquets to stop bleeding in major limb trauma.
        J Trauma. 2008; 64 (suppl):S38-49; discussion S49-50.: S38-S49
        • Kragh Jr., J.F.
        • O'Neill M.L.
        • Walters T.J.
        • Jones J.A.
        • Baer D.G.
        • Gershman L.K.
        • et al.
        Minor morbidity with emergency tourniquet use to stop bleeding in severe limb trauma: research, history, and reconciling advocates and abolitionists.
        Mil Med. 2011; 176: 817-823
        • Scerbo M.H.
        • Mumm J.P.
        • Gates K.
        • Love J.D.
        • Wade C.E.
        • Holcomb J.B.
        • et al.
        Safety and appropriateness of tourniquets in 105 civilians.
        Prehosp Emerg Care. 2016; 20: 712-722
        • Drew B.
        • Bird D.
        • Matteucci M.
        • Keenan S.
        Tourniquet conversion: a recommended approach in the prolonged field care setting.
        J Spec Oper Med. 2015; 15: 81-85
        • Sabate-Ferris A.
        • Pfister G.
        • Boddaert G.
        • Daban J.L.
        • de Rudnicki S.
        • Caubere A.
        • et al.
        Prolonged tactical tourniquet application for extremity combat injuries during war against terrorism in the Sahelian strip.
        Eur J Trauma Emerg Surg. 2022; 48: 3847-3854
      1. Remley M, Loos P, Riesberg J, Montgomery H, Drew B, Keenan S, et al. Joint trauma system prolonged casualty care guidelines (CPG ID:91); 2021. Available at: https://jts.amedd.army.mil/assets/docs/cpgs/Prolonged_Casualty_Care_Guidelines_21_Dec_2021_ID91.pdf. Accessed October 25, 2022.

        • Unlu A.
        • Kaya E.
        • Guvenc I.
        • Kaymak S.
        • Cetinkaya R.A.
        • Lapsekili E.O.
        • et al.
        An evaluation of combat application tourniquets on training military personnel: changes in application times and success rates in three successive phases.
        J R Army Med Corps. 2015; 161: 332-335
        • Schreckengaust R.
        • Littlejohn L.
        • Zarow G.J.
        Effects of training and simulated combat stress on leg tourniquet application accuracy, time, and effectiveness.
        Mil Med. 2014; 179: 114-120
        • Beekley A.C.
        • Sebesta J.A.
        • Blackbourne L.H.
        • Herbert G.S.
        • Kauvar D.S.
        • Baer D.G.
        • et al.
        Prehospital tourniquet use in Operation Iraqi Freedom: effect on hemorrhage control and outcomes.
        J Trauma. 2008; 64 (suppl):S28-37; discussion S37: S28-S37
      2. Joint Trauma System, Committee on Tactical Combat Casualty Care. CoTCCC Recommended Deviced and Adjuncts. December 15, 2021. Available at: https://books.allogy.com/web/tenant/8/books/f94aad5b-78f3-42be-b3de-8e8d63343866/. Accessed July 20, 2022.

        • Kotwal R.S.
        • Butler Jr., F.K.
        Junctional hemorrhage control for tactical combat casualty care.
        Wilderness Environ Med. 2017; 28: S33-S38
        • Gaspary M.J.
        • Zarow G.J.
        • Barry M.J.
        • Walchak A.C.
        • Conley S.P.
        • Roszko P.J.D.
        Comparison of three junctional tourniquets using a randomized trial design.
        Prehosp Emerg Care. 2019; 23: 187-194
        • Bennett B.L.
        Bleeding control using hemostatic dressings: lessons learned.
        Wilderness Environ Med. 2017; 28: S39-S49
        • Winstanley M.
        • Smith J.E.
        • Wright C.
        Catastrophic haemorrhage in military major trauma patients: a retrospective database analysis of haemostatic agents used on the battlefield.
        J R Army Med Corps. 2019; 165: 405-409
        • Ran Y.
        • Hadad E.
        • Daher S.
        • Ganor O.
        • Kohn J.
        • Yegorov Y.
        • et al.
        QuikClot Combat Gauze use for hemorrhage control in military trauma: January 2009 Israel Defense Force experience in the Gaza Strip—a preliminary report of 14 cases.
        Prehosp Disaster Med. 2010; 25: 584-588
        • Shina A.
        • Lipsky A.M.
        • Nadler R.
        • Levi M.
        • Benov A.
        • Ran Y.
        • et al.
        Prehospital use of hemostatic dressings by the Israel Defense Forces Medical Corps: a case series of 122 patients.
        J Trauma Acute Care Surg. 2015; 79 (suppl 2):S204-9: S204-S209
        • Schauer S.G.
        • April M.D.
        • Naylor J.F.
        • Fisher A.D.
        • Cunningham C.W.
        • Ryan K.L.
        • et al.
        QuikClot Combat Gauze use by ground forces in Afghanistan the Prehospital Trauma Registry experience.
        J Spec Oper Med. 2017; 17: 101-106
        • Leonard J.
        • Zietlow J.
        • Morris D.
        • Berns K.
        • Eyer S.
        • Martinson K.
        • et al.
        A multi-institutional study of hemostatic gauze and tourniquets in rural civilian trauma.
        J Trauma Acute Care Surg. 2016; 81: 441-444
        • Travers S.
        • Lefort H.
        • Ramdani E.
        • Lemoine S.
        • Jost D.
        • Bignand M.
        • et al.
        Hemostatic dressings in civil prehospital practice: 30 uses of QuikClot Combat Gauze.
        Eur J Emerg Med. 2016; 23: 391-394
        • Bennett B.L.
        • Littlejohn L.
        Review of new topical hemostatic dressings for combat casualty care.
        Mil Med. 2014; 179: 497-514
        • Johnson D.
        • Bates S.
        • Nukalo S.
        • Staub A.
        • Hines A.
        • Leishman T.
        • et al.
        The effects of QuikClot Combat Gauze on hemorrhage control in the presence of hemodilution and hypothermia.
        Ann Med Surg (Lond). 2014; 3: 21-25
        • Causey M.W.
        • McVay D.P.
        • Miller S.
        • Beekley A.
        • Martin M.
        The efficacy of Combat Gauze in extreme physiologic conditions.
        J Surg Res. 2012; 177: 301-305
        • Te Grotenhuis R.
        • van Grunsven P.M.
        • Heutz W.M.
        • Tan E.C.
        Prehospital use of hemostatic dressings in emergency medical services in the Netherlands: a prospective study of 66 cases.
        Injury. 2016; 47: 1007-1011
        • Kirkpatrick A.W.
        • Campbell M.R.
        • Jones J.A.
        • Broderick T.J.
        • Ball C.G.
        • McBeth P.B.
        • et al.
        Extraterrestrial hemorrhage control: terrestrial developments in technique, technology, and philosophy with applicability to traumatic hemorrhage control in long-duration spaceflight.
        J Am Coll Surg. 2005; 200: 64-76
        • Warriner Z.
        • Lam L.
        • Matsushima K.
        • Benjamin E.
        • Strumwasser A.
        • Demetriades D.
        • et al.
        Initial evaluation of the efficacy and safety of in-hospital expandable hemostatic minisponge use in penetrating trauma.
        J Trauma Acute Care Surg. 2019; 86: 424-430
        • Drew B.
        • Auten J.D.
        • Cap A.P.
        • Deaton T.G.
        • Donham B.
        • Dorlac W.C.
        • et al.
        The use of tranexamic acid in tactical combat casualty care: TCCC proposed change 20-02.
        J Spec Oper Med. 2020; 20: 36-43
        • Shakur H.
        • Roberts I.
        • Bautista R.
        • Caballero J.
        • Coats T.
        • et al.
        • CRASH-2 trial collaborators
        Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial.
        Lancet. 2010; 376: 23-32
        • Morrison J.J.
        • Dubose J.J.
        • Rasmussen T.E.
        • Midwinter M.J.
        Military application of tranexamic acid in trauma emergency resuscitation (MATTERs) study.
        Arch Surg. 2012; 147: 113-119
        • Gayet-Ageron A.
        • Prieto-Merino D.
        • Ker K.
        • Shakur H.
        • Ageron F.X.
        • Roberts I.
        Effect of treatment delay on the effectiveness and safety of antifibrinolytics in acute severe haemorrhage: a meta-analysis of individual patient-level data from 40 138 bleeding patients.
        Lancet. 2018; 391: 125-132
        • Johnston L.R.
        • Rodriguez C.J.
        • Elster E.A.
        • Bradley M.J.
        Evaluation of military use of tranexamic acid and associated thromboembolic events.
        JAMA Surg. 2018; 153: 169-175
        • Myers S.P.
        • Kutcher M.E.
        • Rosengart M.R.
        • Sperry J.L.
        • Peitzman A.B.
        • Brown J.B.
        • et al.
        Tranexamic acid administration is associated with an increased risk of posttraumatic venous thromboembolism.
        J Trauma Acute Care Surg. 2019; 86: 20-27
        • Blue R.S.
        • Bayuse T.M.
        • Daniels V.R.
        • Wotring V.E.
        • Suresh R.
        • Mulcahy R.A.
        • et al.
        Supplying a pharmacy for NASA exploration spaceflight: challenges and current understanding.
        NPJ Microgravity. 2019; 5: 14
        • Jamal L.
        • Saini A.
        • Quencer K.
        • Altun I.
        • Albadawi H.
        • Khurana A.
        • et al.
        Emerging approaches to pre-hospital hemorrhage control: a narrative review.
        Ann Transl Med. 2021; 9: 1192
        • Gourlay T.
        • Simpson C.
        • Robertson C.A.
        Development of a portable blood salvage and autotransfusion technology to enhance survivability of personnel requiring major medical interventions in austere or military environments.
        J R Army Med Corps. 2018; 164: 96-102
        • Butler Jr., F.K.
        • Holcomb J.B.
        • Shackelford S.A.
        • Barbabella S.
        • Bailey J.A.
        • Baker J.B.
        • et al.
        Advanced resuscitative care in tactical combat casualty care: TCCC guidelines change 18-01:14 October 2018.
        J Spec Oper Med. 2018; 18: 37-55
        • Deaton T.G.
        • Auten J.D.
        • Betzold R.
        • Butler Jr., F.K.
        • Byrne T.
        • Cap A.P.
        • et al.
        Fluid Resuscitation in tactical combat casualty care; TCCC Guidelines Change 21-01. 4 November 2021.
        J Spec Oper Med. 2021; 21: 126-137
        • Kotwal R.S.
        • Staudt A.M.
        • Mazuchowski E.L.
        • Gurney J.M.
        • Shackelford S.A.
        • Butler F.K.
        • et al.
        A US military role 2 forward surgical team database study of combat mortality in Afghanistan.
        J Trauma Acute Care Surg. 2018; 85: 603-612
        • Luft A.
        • Pasquier P.
        • Soucanye de Landevoisin E.
        • Morel-Stum N.
        • Baillon A.
        • Louis S.
        • et al.
        The damage control resuscitation and surgical team: the new French paradigm for management of combat casualties.
        Mil Med. 2022; 187: e275-e281
        • Gurney J.M.
        • Jensen S.D.
        • Gavitt B.J.
        • Edson T.D.
        • Brown S.R.
        • Cunningham C.W.
        • et al.
        Committee on Surgical Combat Casualty Care position statement on the use of single surgeon teams and invited commentaries.
        J Trauma Acute Care Surg. 2022; 93 (suppl 1):S6-11: S6-S11
        • Kuypers M.I.
        Emergency and wilderness medicine training for physician astronauts on exploration class missions.
        Wilderness Environ Med. 2013; 24: 445-449
        • Holland S.R.
        • Apodaca A.
        • Mabry R.L.
        MEDEVAC: survival and physiological parameters improved with higher level of flight medic training.
        Mil Med. 2013; 178: 529-536
        • Barshi I.
        • Dempsey D.L.
        NASA Evidence Report: Risk of Performance Errors Due to Training Deficiencies.
        National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, Houston, TX2016 (Available at:)
        • Colonna A.L.
        • Robbins R.
        • Stefanucci J.
        • Creem-Regeh S.
        • Patterson B.
        • Engel B.T.
        • et al.
        Trauma bay virtual reality – a game changer for ATLS instruction and assessment.
        J Trauma Acute Care Surg. 2022; 93: 353-359
      3. Colombano S, Lindsey T, Mansouri-Samani M, Lee R, Marker N. Medics: Medical decision support system for long-duration space exploration. Human Research Program Investigators' Workshop (HRP IWS 2020) conference paper. Available at: https://ntrs.nasa.gov/citations/20200000615. Accessed February 24, 2023.

      4. Hanson A, Mindock J, Okon S, Hailey M, McGuire K, Bardina J, et al. A model-based systems engineering approach to exploration medical system development. 2019 IEEE Aerospace Conference. Available at: https://ieeexplore.ieee.org/document/8741864. Accessed February 24, 2023.

        • Convertino V.A.
        • Cardin S.
        Advanced medical monitoring for the battlefield: a review on clinical applicability of compensatory reserve measurements for early and accurate hemorrhage detection.
        J Trauma Acute Care Surg. 2022; 93 (suppl 1):S147-54: S147-S154